chaos proof

Multi-baker map as a model of digital PD control

Digital stabilization of unstable equilibria of linear systems may lead to small amplitude stochastic-like oscillations. We show that these vibrations can be related to a deterministic chaotic dynamics induced by sampling and quantization. A detailed analytical proof of chaos is presented for the case of a PD controlled oscillator: it is shown that there exists a finite attracting domain in the phase-space, the largest Lyapunov exponent is positive and the existence of a Smale horseshoe is also pointed out.

Subscribe to RSS - chaos proof